Subfigure and Multi-Label Classification using a Fine-Tuned Convolutional Neural Network
نویسندگان
چکیده
This paper describes the submission of the BMET group to the Subfigure Classification and Multi-Label Classification tasks of the ImageCLEF 2016 medical subtrack. Our method creates a new optimised feature extractor by using medical images to fine-tune a CNN that has been pre-trained on general image data. Our classification method shows promising result in both the the subfigure classification and multi-label classification subtasks.
منابع مشابه
Deep learning for multi-label scene classification
Scene classification is an important topic in computer vision. For similar weather conditions, there are some obstacles for extracting features from outdoor images. In this thesis, I present a novel approach to classify cloudy and sunny weather images. Inspired by recent study of a deep convolutional neural network and the spatial pyramid matching, I generate a model based on the ImageNet datas...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملMulti-Speaker Localization Using Convolutional Neural Network Trained with Noise
The problem of multi-speaker localization is formulated as a multi-class multi-label classification problem, which is solved using a convolutional neural network (CNN) based source localization method. Utilizing the common assumption of disjoint speaker activities, we propose a novel method to train the CNN using synthesized noise signals. The proposed localization method is evaluated for two s...
متن کاملClassification of Medical Images and Illustrations in the Biomedical Literature Using Synergic Deep Learning
The Classification of medical images and illustrations in the literature aims to label a medical image according to the modality it was produced or label an illustration according to its production attributes. It is an essential and challenging research hotspot in the area of automated literature review, retrieval and mining. The significant intra-class variation and inter-class similarity caus...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016